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1. Introduction

Practically most of the fluid flows either generated by nature

(e.g., oceans, winds, rivers) or by human industrial activity

(e.g., planes, cars, materials processing, biomedical

engineering) are turbulent ones. There are different common

ways to obtain the information about a flow field with

numerical simulations like [1] and [2]. These approaches have

many constraints, especially for turbulent flows. There is a

need to model turbulent fluid flows in order to improve the

basic understanding of these complex phenomena and to

increase the design quality of technological applications. The

non-linearity in the Navier-Stokes equations gives rise to a

wide range of spatial and temporal turbulent scales. However,

a complete description of a turbulent flow, where the flow

variables (e.g. velocity and pressure) are known as a function

of space and time with the resolution of all scales can only be

obtained by numerically solving the Navier-Stokes equations

[3]. These numerical solutions are called direct numerical

simulations (DNS). Direct numerical simulation is a time-

dependent and three-dimensional numerical solution in which

the governing equations are computed as accurately as

possible without using any turbulence models. It provides a

wide range of information such as velocity, pressure and their

derivatives at any time and space in the flow field. These are

extremely difficult to be measured in experiments [4].

Still with such features, the method demands higher

computer memory compared to the conventional techniques.

In recent years, the developments of supercomputers facilitate

such numerical simulations of fluid flows in different cases

[5]. However, with present resources, a direct simulation is
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feasible for simulation of transient, three-dimensional (3D)

flows in or around simple geometries at low and moderate

Reynolds numbers. Nowadays both finite-difference schemes

and spectral schemes are used for direct numerical simulations

of the fluid flows .Yet it seems that spectral methods are the

best tools to achieve higher accuracy on a simple domain and

demand less computer memory than other alternatives [3].

The first attempt of the DNS was made by Orszag and

Patterson (1972) to perform computation of isotropic

turbulence at a Reynolds number (based on Taylor micro

scale) of 35 [6]. More recently, the DNS of the fully developed

turbulent channel flow started for the wall turbulence. Actually

the plane channel DNS was preceded by DNS of the flow in a

curved channel. It was not until 1987 that DNS of the plane

channel was performed by Kim et al. (1987) [7]. Their

Reynolds number based on the friction velocity ut and the

channel half width d was Reτ=180. Since then, the channel

flow has proven to be an extremely useful framework for the

study of wall-bounded turbulence. It has often been performed

because of its simple geometry and fundamental nature to

understand the transport mechanism. Afterwards various

Reynolds number channel simulations have been performed

by many others. Kuroda et al. [8] and Kasagi et al. [9] carried

out the DNS for a slightly lower Reynolds number of Reτ=150.

Kim et al. [10] also performed a DNS with a higher Reynolds

number of Reτ=395. Kawamura et al. [11, 12] performed the

DNS to include the scalar transport with various Prandtl

numbers for Reτ=180 and 395. They also carried out the DNS

for a higher Reynolds number of Reτ=640 and reported

preliminary results in Kawamura [13] and Kawamura et al.

[14]. In recent years, numerical simulations of fully developed

turbulent channel flow at Reynolds numbers up to Reτ=2320

[15] and Reτ=2000 [16] are also reported.

There is a rich variety of strategies for time discretizing of

the Navier–Stokes equations in direct numerical simulations.

Most commonly used time-discretization strategies are

splitting techniques and coupled methods (monolithic

methods). The progenitor of splitting methods in fluid

dynamics is the Chorin–Temam method proposed by Chorin

(1968) and Temam (1969) in the late 1960s. In the late 1970s,

second-order Adams–Bashforth for explicit terms and second-

order Crank–Nicolson for implicit terms were common

choices [17]. Low-storage Runge–Kutta (third-order and

fourth-order) for explicit terms became popular in the 1980s

[18]. In the 1990s, the third-order backward difference scheme

came into use for implicit terms. Potentially, more accurate

splitting scheme is existed based on a higher order

discretization of the time derivative [17].

This paper presents results from Direct Numerical

Simulations (DNS) of fully developed plane channel flow. This

is a prototypical flow frequently used to study physical and

numerical modeling of wall-bounded flows. The mathematics

of numerical method are based on the pseudo spectral

algorithm, proposed by Canuto et al. [19], with spectral

discretization in spatial directions (Fourier × Chebyshev

×Fourier) and finite-differencing in time. The differential

equations are Helmholtz equations. The tau-equation solution

with tau correction is also used in their discretized form for

each Fourier mode. Primitive variables (3d velocity and

pressure) are used to integrate the incompressible Navier-

Stokes equations. The time advancement is carried out by both

semi-implicit schemes and splitting methods. Here, we report

two-stage scheme based on a BDF (backward difference

algorithm) treatment of the linear terms, combined with an

explicit extrapolation of the nonlinear convection terms.

The primitive variable form of the three-dimensional

incompressible Navier-Stokes equations has several

equivalent versions due to the precise manner of expressing

the nonlinear terms. The more common alternatives are the

convection form, the divergence form, the skew-symmetric

form and the rotation form [20]. Zang found that the

collocation results based on the rotation form were decidedly

inferior to those based on the skew-symmetric (or the more

economical alternating) form, but de-aliased rotation form

performed quite admirably. Nevertheless, there isn’t a

comprehensive report of their usage in de-aliased Poiseuille

channel flow in x and z directions. In this work, our first

concern is to reduce the computational cost, so a new variable

time stepping method is applied by adding an accessory

(supplementary) algorithm. This algorithm is used to minimize

the computational cost of integration by maximizing the time

step, while the CFL number keeps near a threshold. The CFL

number and time step are bound in a given range to control the

stability. This time step determines as a fraction of a fixed

time-interval to keep CFL number maximum under above

condition. The results of direct numerical simulations for

turbulent channel flow with six different forms of nonlinear

terms and six different time-discretization methods in variable

time stepping manner are compared to choose the most

economic, accurate and stable algorithm.

2. Numerical Method

The channel flow is a remarkable example of wall bounded

problems. In this study, a plane Poiseuille flow with parabolic

stream-wise velocity profile and no slip occurring at the planes

is considered. The flow geometry and the coordinate system

are shown in figure 1.

Fully developed turbulent channel flow is homogeneous on a

rectangular, wall bounded domain. Flow fields are allocated in

terms of their physical grid sizes NxGNyGNz on the

computational domain Ω=[0,Lx]G[a,b]G[0,Lz] . Lx and Lz are

respectively the periods in two infinite stream wise and span

wise directions and b-a is the height of the channel. In this case
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Fig. 1. Schematic of channel flow



the flow domain is set to be 2 units high, 2π units wide and 4π
units long that periodically continued in span-wise and stream-

wise direction. The flow is integrated on a 128×65×128 grid

points. No-slip boundary conditions at y=F1  are assumed.

The initial Reynolds number is 4000 so the viscosity set to be

v=1/4000. The velocity flow represents by vector-valued

Fourier × Chebyshev × Fourier expansions whose

mathematical form is as follows;

(1)

where, X=(x,y,z). The double tilde/hat notation on the spectral

coefficients indicates that the coefficients result from a

combined Fourier transform in xz and a Chebyshev transform

in y. Here T-
m is the mth Chebyshev polynomial rescaled to the

interval yX[a,b]. That is, 

and Tm is Chebyshev polynomial of the usual domain [-1,1].

The spectral coefficients of u can be computed efficiently from

the function values taken at a discrete set of Chebyshev grid

points in the form of;

(2)

The discretization in the horizontal directions are done using

Fourier series expansions thus assuming periodicity, which is

reasonable if the flow is homogeneous in these directions.

Here Nx and Nz are the number of Fourier modes included in

the respective directions.

3. Governing Equations

The Navier-Stokes equations for an incompressible flow in

the channel flow geometry can be written in the following

form:

(3)

dutot = 0                                                                         (4)

Where utot(x;t) is the total fluid velocity field with u,v
and w components in three dimensions and ptot(x;t) is 

the total pressure field. The first and second equations

represent conservation of momentum and incompressibility of

the fluid, respectively. The velocity satisfies the no-slip

boundary conditions (u=0) at both upper and lower channel

walls (y=a,b). The boundary conditions in the x and z
directions are periodic: utot(x+Lx,y,z;t)=utot(x,y,z;t) and

utot(x,y,z+L;t)=utot(x,y,z;t) 
Total velocity and pressure fields can be broken into constant

and fluctuating parts, so the velocity field is the sum of the

base velocity or base flow U(y)ex, and the fluctuating velocity

u(x; t). The total pressure field is also the sum of a linear-in-x

term Πx(t) x and a periodic fluctuating pressure p(x; t). Also

the gradient of this decomposition relates the total pressure

gradient to a spatially-constant base pressure gradient Πxex and

a fluctuating pressure gradient p(x; t). Therefore;

utot (x;t)=U(y)ex+u(x;t) (5)

(6)

(7)

Substituting equations 5 and 7 into equation 3 gives:

(8)

There are several different forms for the nonlinear term utot .
dutotin equation 8 that are identical in continuous mathematics

but have different properties when discretized.

The convection form utot . dutot (9)

The divergence form  d.(utot utot )                                  (10)

The skew-symmetric form 1/2 utot .dutot +1/2d.(utot utot) (11) 

The rotational form (dGutot )G utot +1/2 d.(utot utot ) (12)

In this paper, the nonlinear term is first expanded with the

base-fluctuation decomposition and then, calculates the

nonlinear term from these forms:

(13)

(14)

The forms of nonlinear term, defined by N (u), which could

substitute in this code, are as follows;

(15)

The details and mathematics are based on the spectral

channel flow algorithm proposed by Cantou et al. [19].

Equation 13 is solved by the Chebychev-tau method for each

wave number after it is Fourier transformed in the stream wise

and spans wise directions. Also, there is a need to add tau

correction to the solution of the equations in their discretized

form which is used to determine the pressure.

4. Time Advancement

The time advancement is carried out by 6 time-integration

schemes. All schemes treat the linear term implicitly and the

nonlinear term explicitly. The initial time step is set to a

definite dt0 or could be determined by the average of

minimum and maximum bounds and may vary during the

integration dt=dt0 / n.

In formulation of time integration scheme, linear term L (u)

and the constant term C in Navier-Stokes equation are defined

by:

2 ( )
m m

y b a
T T

b a

− +
=

−
� �
� �
� �

� �
	
�� 	� �� ��

12 2
2 ( )

, ,
2 1 0 2 1

ˆu(x)= u ( )
yx z

x x z z

x x y z z

NN N
i k x L k z L

kx ny kz m
k N n k N

T y e π
−

+

=− + = =− +
� � � �

cos (0, 1)
2 2 1n y

y

b a b a n
y n N

N

π+ −
= + ∈ −

−

� �
� �� �
� �

2u
u u utot

tot tot tot totp
t

ν∂ + ⋅∇ = − ∇ + ∇
∂

( )

( )

u
u u e Rotational

u u Convection 

(u u ) Divergence 
N(u) 1 1

u u u u Skew-symmetric 
2 2

u
e Linearized

Alternating form (: equation 10 and 11 on alternating time 

x

tot tot

tot tot

tot tot tot tot

x

U
U

x y

U
U

x y

ν

ν

∂ ∂∇ × × + +
∂ ∂

⋅∇
∇ ⋅

⋅∇ + ∇ ⋅

∂ ∂+
∂ ∂

steps)

	











�











�

(x; )totp t∇ ( ) (x; )x

dP
t e p t

dx
= + ∇ ( ) (x; )x xt e p t= ∏ + ∇

(x; ) ( ) (x; )tot

dP
p t x t p t

dx
= + ( ) (x; )x t x p t= ∏ +

u
p

t

∂ + ∇
∂

2
2

2
u u u +tot tot x x

U
e

y
ν ν� �∂= ∇ − ⋅∇ − Π� �∂� 	

u
q

t

∂ + ∇
∂

2
2

2
u N(u) + x

U

y
ν ν� �∂= ∇ − − Π� �∂� 	

1 2u.u Rotational

 else

p
q

p

+

�
�

339International Journal of Civil Engineering, Vol. x, No. x, xxx



(16)

(17)

With these definition the equation (13) can be written as:

(18)

After Fourier transform, equation 15 can be written as

follows;

(19)

Let u
~ n be the approximation of  u

~ 
at time t=nDt and 

.Here, we use three time advancement methods

as examples for coupled (monolithic) techniques .They are

mixed Crank-Nicolson/ second order Adams-Bashforth

scheme (CNAB2),  3rd order Runge-Kutta scheme combined

to Crank-Nicolson method  (CNRK3) and  joined second order

Spalart-Moser,  Runge-Kutta scheme  (SMRK2). To determine

the terms in equation 19 at t=(n-1/2)Dt they would

approximate as follows

(20)

(21)

(22)

(23)

(24)

The time-derivative approximations for the linear terms are

Crank-Nicolson, and that of the nonlinear term (N) is second

order Adams-Bashforth, which could plug into equation 15 

for different time-integration scheme. Different coefficients 

ai, bi , gi and zi could use for each sub-step(Dt) in a time step

and rearranged as follows;

(25)

The second superscript i indicates the time method sub-steps

[21].  3rd order Runge-Kutta scheme is a low-storage Runge-

Kutta method, which is proposed to minimize storage

demands in spectral methods. The general representation with

2 levels of storage is as follows;

u0=un 

Qj=Aj Qj-1 +Dt N(uj-1)

uj=uj-1+BjQj-1 + Bj Dt[L(uj-1)+L(uj)]      j=1,... , s=3        

un+1=u3 (26)

Note that Ai, Bi, B'i are same coefficients as ai, bi , gi based

on semi implicit three stage Runge-Kutta algorithm in

"Spectral methods for incompressible viscous flow" by Roger

Peyret [22]. 

Splitting method is another class of implicit time

discretizations which is used in our research. This scheme

leads to a pressure-correction algorithm based on a backward

difference algorithm (BDF) treatment of the linear terms

combined with an explicit extrapolation of the nonlinear

convection terms. Higher order discretization of the time

derivative based on backwards difference formulas is used for

linear terms. Here, a three-stage scheme based on a BDF

treatment of the linear terms combined with an explicit

extrapolation of the nonlinear convection terms is applied. Let

J ≥ 1 be the number of steps and z0 ,a0,a1,...,aj-1 the

coefficients, of the BDF formula for the discretization,

therefore the time derivative dy/dt at time n-1 is  

(27)

Moreover, let b0,b1,...,bj-1 be the coefficients of the

extrapolation formula for nonlinear term [21], thus we have;

(28)

The first stage consists of solving the explicit problem in the

forms of;

(29)

The second stage is the projection step as follows;

(30)

And the third stage is the diffusion step in the following

form;

(28)

un+1=0  on dW0 (31)

Time-integration schemes and coefficient values for each

time method are reviewed in table 1.

5. Results and discussion

A direct numerical simulation of turbulent channel flow is

carried out on a periodic, rectangular, wall bounded domain

with128 × 65 × 128 mesh points at the friction Reynolds

number of Reτ=175 based on a friction velocity and channel

half width and initial viscosity of ν=1/4000. A fully pseudo

spectral method of Fourier series in the homogeneous

directions and Chebyshev polynomial expansion in the normal

direction are used for the spatial derivatives with different time

advancement schemes. De-aliased XZ method is employed to

vanish aliasing error at x and z (not y) directions and different

forms of nonlinear term utot . dutot  are used to illustrate the

effect of various algorithms. The results of turbulence statistics

have been collected and compared with different forms of time

advancements and nonlinear terms. The comparison of
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turbulence intensities is made over the interval from T0=100 to

T1=300 due to [4] and the time step of recorded information

was dT=10 sec. The initial time step dt0 set to .02 and the

variable time step is bounded from dtmin=0.002 to dtmax=0.04.

Also the CFL condition is adjusted to [0.4,0.8].

Figure 2 shows the results of stream-wise turbulence strength

value in different time advancement schemes, using the

rotational form to extract the nonlinear term. Despite the

qualitative agreement in all forms, detailed comparison in the

middle of the channel reveals discrepancies between SBDF2

and the other schemes. In this region, the results of SBDF2 as

higher values than the other forms. The average values of

stream-wise turbulence strength (uu) at each grid point of

normal direction in all time advancements are computed,

except for SBDF2 scheme and the results are compared. The

deviation of averaged values is 1.94E-03 (156%) in SBDF2

scheme, while the obtained maximum deviation in other

scheme is about 4.00 E-4 (3.36%) at SBDF4 method. Also the

trend of normal and span wise turbulence strength profile of

SBDF2 scheme is completely different from Kim et al. result

[7] in the middle of the channel height. 

Figure 3 & 4 show that comparison of turbulence strength that

revealed consistence discrepancy in the middle of the channel.

The maximum deviation of averaged vv values obtained from

CNAB2 method is about 6.02E-05 (8.69%) and 3.33E-03

(482%) from SBDF2 scheme. This maximum deviation of

averaged ww is reached to 1.21E-04 (5.28%) in SBDF4

scheme but is about 3.54E-03 (490%) in SBDF2 scheme.

Table 2 reviews the values of wall-shear velocity, standard

deviation, overall CPU time, total normalized energy of

instantaneous velocities(u),  dissipation and normalized energy

of U(base flow velocity) and u(instantaneous stream wise

velocity) . The computed values are providing with six time
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Table 1. Time-integration schemes and their Characteristics (coefficient)
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Fig. 2. stream-wise turbulence strength with different time
advancement scheme
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advancement schemes. The standard deviation of u in each

method is computed by;

(32)

And the total normalized energy of instantaneous velocities

is calculated by:

(33)

The differences between the values of SBDF2 and other

schemes are noticeable. In all versions, the calculated values of

turbulent specifications are almost similar except for the SBDF2

scheme. For example, according to the table 2, dissipation

values of SBDF2 scheme differs about 1.75% (.08835) of the

average values from other schemes whereas the maximum

deviation from average values of other 5 schemes is 17% (.86). 

The variation of CFL number during the operation with SBDF2

is shown in Figure 5. The figure shows sharp fluctuating which

may make the solution unstable. In practical computations, one

uses schemes that yield higher accuracy under milder stability

restrictions. Both higher-order time discretization and smaller

time step could be applied to achieve the desirable solution and

avoid weak instability. (The notion of weak instability is used in

a loose sense for schemes which admit solutions to periodic

hyperbolic problems that grow with time, but for which the

growth rate decreases with Δt [21]). It looks that we have weak

instability in lower-order time discretization like SBDF2 scheme.

For such weakly instability, in the long the time interval of

interest, the Δt must be chosen smaller to keep the spurious

growth of the solution within acceptable bounds. We propose as

the modified SBDF2 to eliminate the source of instability and

discrepancy is by decreasing the initial time step (dt) from 0.02

to 0.01. Also, the minimum bound of time step (dtmin) should be

decreased from 0.002 to 0.0005 and the CFL condition had to be

adjusted by changing the given interval of CFL number from

[0.4,0.8] to [0.2,0.6]. These changes increase the overall CPU

time up to 4.1111e+04 and decrease the dominant CFL condition 

from about 0.5 to 0.25. As a result, the values of wall shear

velocity, energy (u) and dissipation of U+u change to

0.04380108, 0.0191442 and 5.13975 in modified SBDF2, which

are very close to the values of other time advancement schemes.

Figure 6 compares the result of modified SBDF2 and other

time advancement methods. According to the results, the

difference between the results of uu turbulence strength from

modified SBDF2 and average values from other 5 schemes is

about 2.63% (2.08E-04). The resulted differences are 1.72%

(2.03E-05) for vv and 1.69% (3.96E-05) for ww. The

maximum deviation from average values is 3.13% (3.73E-04)

for uu at SBDF4, 8.74% (6.06E-05) for vv at CNAB2 and

4.97% (9.29E-05) for ww at SBDF3 scheme. The deviation of

averaged values of turbulence statistics between SBDF2 and

other schemes are summarized in table 3.

The above results indicate that in comparison with other time

advancement algorithms, SBDF2 provides less accuracy in

solving plane channel flow problem in the same time step. The

comparison between CNRK3 and SMRK2 method indicates

that the proposed low-storage Runge-Kutta method do slightly

reduces the total time. It looks that the use of Runge-Kutta

algorithm for the solution of nonlinear term is time consuming.

This modification decreases the overall time from 7.706e+04

to 6.593e+04 (just about 14.4%) which still is more than 2nd

order Adams-Bashforth method in CNAB2.

The verification and accuracy of the presented analysis in

rotational form with varied time step algorithm and different

( ) ( )
1

0

i i i i

0 0

1 1
u u u u

x zL LbT

mean mean
i T x y z a

dx dy dz
N L L L=

− ⋅ −
 � � �  

1

0

i i

0 0

1
u u

x zL LbT

i T x y z a

dx dy dz
L L L=

⋅
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Table 2. Specification of turbulent flow in different time advancement schemes in rotational 
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Fig. 5. variation of CFL number in different time advancement
scheme
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Fig. 6. Comparison of turbulence strength (modified SBDF2 and
other time advancement scheme)
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time advancement methods is validated in Fig. 7 with Kim et.

al. results [7], in a fully developed turbulent channel flow and

arbitrary time-integration schemes like SBDF3. Turbulence

statistics profiles show excellent agreements between our

calculation and Kim et. al. ones which are based on constant

time stepping algorithm.

Also, it should be noticed that based on 128 × 65 × 128 grid

points in this research, the uniform grid spacing in the stream-

wise and span-wise directions are Dx+y15 and Dz+y7.5

respectively. In the vertical direction, a non-uniform mesh

distribution is used, with the minimum grid spacing of

Dy+miny0.2  near the wall and the maximum of Dymaxy7.5

spacing at the centerline of the channel, which are sufficient

and acceptable due to Moser et. al. [24] and Moin & Mahesh

[3]. In Kim et. al research the grid spacing are: Dx+y12 ,

Dymaxy4.4 , Dy+miny0.05 and Dz+y7 in the wall units

within192 × 129 × 160 mesh points. It would obtain friction

Reynolds number of  Reτ=175 that seems to be excessive for

the under consideration Reynolds number. 

In addition various discritization of nonlinear term with

SBDF3 time advancement method by removing aliasing errors

in X and Z direction are studied. The result of turbulence

statistics in stream wise, normal and span wise directions are

respectively shown in Figures 8 to 10. Table 4 reviews the

results of overall CPU, wall shear velocity, normalized

standard deviation of u in each method, and the normalized

total energy of instantaneous velocities.

Table 4 shows minor difference between the computed

values for energy, wall shear velocities and standard deviation

of u component. Obviously, several algorithms like Skew-

Symmetric method and combined Alternating method are

more time consuming. It should be noticed that18 derivatives

are required for the evaluation of skew-symmetric and

convection form which need greatest computational cost.

Divergence and alternating forms take 9 derivatives whereas

only 6 derivatives are needed in the rotation form that seems

more economical.

It is also important that the Linearized method is not a

suitable suggestion due to instability problem in pseudo

spectral method.
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Fig. 9. Comparison of normal turbulence strength at different
version of nonlinear term in SBDF3 scheme
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Fig. 10. Comparison of span-wise turbulence strength at different
version of nonlinear term in SBDF3 scheme
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Table 3. The deviation of averaged values of turbulence statistics in different time advancement schemes 
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Fig. 7. Root-mean-square velocity fluctuations from SBDF3 and
Kim et.al. results, symbols represent the data from Kim et.al. [4]
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Fig. 8. Comparison of stream-wise turbulence strength at different
version of nonlinear term in SBDF3 scheme
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6. Conclusion 

The present work provides a complete and systematic study of

various time advancement schemes and different expression of

nonlinear terms for the three-dimensional incompressible

Navier-Stokes equations to find the best framework for the

analysis of a Poiseuille channel flow. A variable time stepping

algorithm is proposed as a desirable modification to reduce the

computation cost. Two common time-discretization strategies of

splitting techniques and monolithic method are used. It is

specifically shown that between the sampling techniques, the

variable time stepping third order backward difference algorithm

provides simultaneity more improvement in total CPU time and

accuracy. Also the results demonstrate that low-storage Runge-

Kutta method has less effect on total time reduction.

In nonlinear term explanation, against the result of other

numerical methods such as [23] and [20], in a fully tau pseudo

spectral method, the comparisons presented above

demonstrated that the performance of rotation method is the

same as skew symmetric and other form of discritization,

whenever the aliasing errors are removed. It is concluded that

based on economic consideration, the dealiased rotational form

is the best choice and skew-symmetric scheme needs greatest

computational cost without much accuracy improvement.

From practical point of view, the most desirable approach is

a combination of third-order SBDF3 and rotational form in a

variable time stepping algorithm. It is believed that this

algorithm provides further cost and accuracy improvements in

the process of simulation.
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